A natural bijection between permutations and a family of descending plane partitions
نویسنده
چکیده
We construct a direct natural bijection between descending plane partitions without any special part and permutations. The directness is in the sense that the bijection avoids any reference to nonintersecting lattice paths. The advantage of the bijection is that it provides an interpretation for the seemingly long list of conditions needed to define descending plane partitions. Unfortunately, the bijection does not relate the number of parts of the descending plane partition with the number of inversions of the permutation as one might have expected from the conjecture ofMills, Robbins andRumsey, although there is a simple expression for the number of inversions of a permutation in terms of the corresponding descending plane partition. © 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
A Protobijection between Alternating Sign Matrices and Descending Plane Partitions
We construct a direct natural bijection between descending plane partitions without any special part and permutations. The directness is in the sense that the bijection avoids any reference to nonintersecting lattice paths. The advantage of the bijection is that it provides an interpretation for the seemingly long list of conditions needed to define descending plane partitions. Unfortunately, t...
متن کاملA Solution to the Asm-dpp-tsscpp Bijection Problem in the Permutation Case
We give bijections between permutations and two types of plane partitions, descending (DPP) and totally symmetric self-complementary (TSSCPP). These bijections map the inversion number of the permutation to nice statistics on these DPPs and TSSCPPs. We also discuss the possible extension of this approach to finding bijections between alternating sign matrices and all DPPs and TSSCPPs.
متن کاملBijections for permutation tableaux
In this paper we propose a new bijection between permutation tableaux and permutations. This bijection shows how natural statistics on the tableaux are equidistributed to classical statistics on permutations: descents, RLminima and pattern enumerations. We then use the bijection, and a related encoding of tableaux by words, to prove results about the enumeration of permutations with a fixed num...
متن کاملBaxter permutations and plane bipolar orientations
We present a simple bijection between Baxter permutations of size n and plane bipolar orientations with n edges. This bijection translates several classical parameters of permutations (number of ascents, right-to-left maxima, left-to-right minima...) into natural parameters of plane bipolar orientations (number of vertices, degree of the sink, degree of the source...), and has remarkable symmet...
متن کاملA bijection between permutations and a subclass of TSSCPPs
We define a subclass of totally symmetric self-complementary plane partitions (TSSCPPs) which we show is in direct bijection with permutation matrices. This bijection maps the inversion number of the permutation, the position of the 1 in the last column, and the position of the 1 in the last row to natural statistics on these TSSCPPs. We also discuss the possible extension of this approach to f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 31 شماره
صفحات -
تاریخ انتشار 2010